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Abstract

A key challenge in the design of multi-sensor systems is the
efficient allocation of scarce resources such as bandwidth,
CPU cycles, and energy, leading to the dynamic sensor se-
lection problem in which a subset of the available sensors
must be selected at each timestep. While partially observ-
able Markov decision processes (POMDPs) provide a natural
decision-theoretic model for this problem, the computational
cost of POMDP planning grows exponentially in the num-
ber of sensors, making it feasible only for small problems.
We propose a new POMDP planning method that uses greedy
maximization to greatly improve scalability in the number of
sensors. We show that, under certain conditions, the value
function of a dynamic sensor selection POMDP is submod-
ular and use this result to bound the error introduced by per-
forming greedy maximization. Experimental results on a real-
world dataset from a multi-camera tracking system in a shop-
ping mall show it achieves similar performance to existing
methods but incurs only a fraction of the computational cost,
leading to much better scalability in the number of cameras.

Introduction
Multi-sensor systems are becoming increasingly prevalent
in a wide range of settings. For example, multi-camera sys-
tems are now routinely used for security, surveillance, and
tracking. A key challenge in the design of such systems is
the efficient allocation of scarce resources such as the band-
width required to communicate the collected data to a cen-
tral server, the CPU cycles required to process that data, and
the energy costs of the entire system. This gives rise to the
dynamic sensor selection problem (Spaan and Lima 2009;
Kreucher, Kastella, and Hero 2005; Williams, Fisher, and
Willsky 2007): selecting, based on the system’s current un-
certainty about its environment, K of the N available sen-
sors to use at each timestep, where K is the maximum num-
ber of sensors allowed given the resource constraints.

When the state of the environment is static, a myopic ap-
proach that always selects the sensors that maximize the im-
mediate expected reduction in uncertainty is typically suffi-
cient. However, when that state changes over time, a non-
myopic approach that reasons about the long-term effects
of the sensor selection performed at each step can perform
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better. A natural decision-theoretic model for such an ap-
proach is the partially observable Markov decision pro-
cess (POMDP) (Aström 1965; Smallwood and Sondik 1973;
Kaelbling, Littman, and Cassandra 1998) in which actions
specify different subsets of sensors.

In a typical POMDP, reducing uncertainty about the state
is only a means to an end. For example, in a robot control
task, the robot aims to determine its current location so it
can more easily reach its goal. However, dynamic sensor se-
lection is a type of active perception problem (Spaan 2008;
Spaan and Lima 2009), which can be seen as a subclass of
POMDPs in which reducing uncertainty is an end in itself.
For example, a surveillance system’s goal is typically just to
ascertatin the state of its environment, not use that knowl-
edge to achieve another goal. While perception is arguably
always performed to aid decision-making, in an active per-
ception problem that decision is made by another agent, e.g.,
a human, not modeled by the POMDP.

Although POMDPs are computationally expensive to
solve, approximate methods such as point-based planners
(Pineau, Gordon, and Thrun 2006; Araya et al. 2010) have
made it practical to solve POMDPs with large state spaces.
However, dynamic sensor selection poses a different chal-
lenge: as the number of sensors N grows, the size of the
action space

(
N
K

)
grows exponentially. Consequently, as the

number of sensors grows, solving the POMDP even approx-
imately quickly becomes infeasible with existing methods.

In this paper, we propose a new point-based planning
method for dynamic sensor selection that scales much better
with the number of sensors. The main idea is to replace max-
imization with greedy maximization (Nemhauser, Wolsey,
and Fisher 1978; Golovin and Krause 2011; Krause and
Golovin 2014) in which a subset of sensors is constructed by
iteratively adding the sensor that gives the largest marginal
increase in value. Doing so avoids iterating over the entire
action space, yielding enormous computational savings.

In addition, we present theoretical results bounding the er-
ror in the value functions computed by this method. Our core
result is that, under certain conditions including submodu-
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larity (Krause and Golovin 2014; Nemhauser, Wolsey, and
Fisher 1978), the value function computed using POMDP
backups based on greedy maximization has bounded error.
We also show that such conditions are met, or approximately
met, if reward is defined using negative belief entropy or an
approximation thereof. To our knowledge, these are the first
results demonstrating the submodularity of value functions
and bounding the error of greedy maximization in the full
POMDP setting.

Finally, we apply our method to a real-life dataset from
a multi-camera tracking system with thirteen cameras in-
stalled in a shopping mall. Our empirical results demonstrate
that our approach outperforms a myopic baseline and nearly
matches the performance of existing point-based methods
while incurring only a fraction of the computational cost,
leading to much better scalability in the number of cameras.

Background
In this section, we provide background on POMDPs, dy-
namic sensor selection POMDPs, and point-based methods.

POMDPs
A POMDP is a tuple 〈S,A,Ω, T,O,R, b0, γ, h〉. At each
timestep, the environment is in a state s ∈ S, the agent
takes an action a ∈ A and receives a reward whose ex-
pected value is R(s, a), and the system transitions to a
new state s′ ∈ S according to the transition function
T (s, a, s′) = Pr(s′|s, a). Then, the agent receives an ob-
servation z ∈ Ω according to the observation function
O(s′, a, z) = Pr(z|s′, a). The agent can maintain a belief
b(s) using Bayes rule. Given b(s) and R(s, a), the belief-
based reward, ρ(b, a) is:

ρ(b, a) =
∑
s

b(s)R(s, a). (1)

A policy π specifies how the agent will act for each belief.
The value V πt (b) of π given t steps to go until the horizon h
is given by the Bellman equation:

V πt (b) = ρ(b, aπ) + γ
∑
z∈Ω

Pr(z|aπ, b)V πt−1(bz,aπ ). (2)

The action-value function Qπt (b, a) is the value of taking ac-
tion a and following π thereafter:

Qπt (b, a) = ρ(b, a) + γ
∑
z∈Ω

Pr(z|a, b)V πt−1(bz,a). (3)

The optimal value function V ∗t (b) is given by the Bellman
optimality equation:

V ∗t (b) = max
a

Q∗t (b, a)

= max
a

[ρ(b, a) + γ
∑
z∈Ω

Pr(z|a, b)V ∗t−1(bz,a)].
(4)

We can also define the Bellman optimality operator B∗:

(B∗Vt−1)(b) = max
a

[ρ(b, a)+γ
∑
z∈Ω

Pr(z|a, b)Vt−1(bz,a)],

(5)

and write (4) as: V ∗t (b) = (B∗V ∗t−1)(b).
An important consequence of (1) is that V ∗t is piece-

wise linear and convex (PWLC). This property, which is
exploited by most POMDP planners, allows V ∗t to be rep-
resented by a set of vectors: Γt = {α1, α2 . . . αm}, where
each α-vector is an |S|-dimensional hyperplane representing
V ∗t (b) in a bounded region of belief space. The value func-
tion can then be written as V ∗t (b) = maxαi

∑
s b(s)αi(s).

Dynamic Sensor Selection POMDPs
We model the dynamic sensor selection problem as a
POMDP in which the agent must choose a subset of avail-
able sensors at each timestep. We assume that all selected
sensors must be chosen simultaneously, i.e., it is not possi-
ble within a timestep to condition the choice of one sensor
on the observation generated by another sensor. This cor-
responds to the common setting in which generating each
sensor’s observation is time consuming, e.g., because it re-
quires applying expensive computer vision algorithms, and
thus all observations must be generated in parallel. Formally,
a dynamic sensor selection POMDP has the following com-
ponents:

• Actions a = 〈a1 . . . aN 〉 are modeled as vectors of N
binary action features, each of which specifies whether a
given sensor is selected or not (assuming N sensors). For
each a, we also define its set equivalent a = {i : ai = 1},
i.e., the set of indices of the selected sensors. Due to the
resource constraints, the set of all actions A = {a : |a| ≤
K} contains only sensor subsets of size K or less. A+ =
{1, . . . , N} indicates the set of all sensors.

• Observations z = 〈z1 . . . zN 〉 are modeled as vectors of
N observation features, each of which specifies the sen-
sor reading obtained by the given sensor. If sensor i is
not selected, then zi = ∅. The set equivalent of z is
z = {zi : zi 6= ∅}. To prevent ambiguity about which
sensor generated which observation in z, we assume that,
for all i and j, the domains of zi and zj share only ∅.

• The transition function T (s′, s) = Pr(s′|s) is indepen-
dent of a because the agent’s role is purely observational.

• The belief-based reward ρ(b) is also independent of a
and is typically some measure of the agent’s uncertainty.
A natural choice is the negative entropy of the belief:
ρ(b) = −Hb(s) =

∑
s p(s) log(p(s)). However, this def-

inition destroys the PWLC property. Instead, we approxi-
mate −Hb(s) using a set of vectors Γρ = {αρ1, . . . , αρm},
each of which is a tangent to −Hb(s), as suggested by
(Araya et al. 2010). Figure 1 shows the tangents for an
example Γρ for a two-state POMDP. Because these tan-
gents provide a PWLC approximation to belief entropy,
the value function is also PWLC and can thus be com-
puted using standard solvers.

Point-Based Value Iteration
Exact POMDP planners (Smallwood and Sondik 1973;
Monahan 1982; Lovejoy 1991; Kaelbling, Littman, and Cas-
sandra 1998) compute the optimal Γt-sets for all possible
belief points. However, this approach is intractable for all
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Figure 1: Tangents approximating negative belief entropy.

but small POMDPs. By contrast, point-based value iteration
(PBVI) (Pineau, Gordon, and Thrun 2006) achieves much
better scalability by computing the Γt-sets only for a set of
sampled beliefs B, yielding an approximation of V ∗t .

At each iteration, PBVI computes Γt given Γt−1 as fol-
lows. The first step is to generate intermediate Γz,a

t -sets for
all a ∈ A and z ∈ Ω: Γz,a

t = {αz,a : α ∈ Γt−1}, where

αz,a(s) = γ
∑
s′∈S

T (s, s′)O(s′, a, z)α(s′).

The next step is to use the intermediate sets to generate sets
Γa
t = {αa,b : b ∈ B}, where

αa,b = arg max
αρ∈Γρ

∑
s

b(s)αρ(s)+
∑

z

arg max
αz,a∈Γz,a

t

∑
s

αz,a(s)b(s).

The final step is to find the best vector for each b ∈ B and
generate Γt. To facilitate explication of our algorithm in the
following section, we describe this final step somewhat dif-
ferently than Pineau, Gordon, and Thrun (2006). For each
b ∈ B and a ∈ A we must find the best αa,b ∈ Γa

t :

α∗a,b = arg max
αa,b∈Γa

t

∑
s

αa,b(s)b(s), (6)

and simultaneously record its value: Q(b, a) =∑
s α
∗
a,b(s)b(s). Then, for each b ∈ B, we find the

best vector across all actions: αb = α∗a∗,b, where

a∗ = arg max
a∈A

Q(b, a). (7)

Finally, Γt is the union of these vectors: Γt = ∪b∈B αb.

Greedy PBVI
The computational complexity of one iteration of PBVI is
O(|S||A||Γt−1||Ω||B|) (Pineau, Gordon, and Thrun 2006).
While this is only linear in |A|, in our setting |A| =

(
N
K

)
.

Thus, PBVI’s complexity is O(|S|
(
N
K

)
|Γt−1||Ω||B|), lead-

ing to poor scalability in N , the number of sensors. In
this section, we propose greedy PBVI, a new point-based
POMDP planner for dynamic sensor selection whose com-
plexity is only O(|S||N ||K||Γt−1||Ω||B|), enabling much
better scalability in N .

The main idea is to exploit greedy maximization
(Nemhauser, Wolsey, and Fisher 1978), an algorithm that
operates on a set function F : 2X → R. Algorithm 1 shows
the argmax variant, which constructs a subset Y ⊆ X of size
K by iteratively adding elements of X to Y . At each itera-
tion, it adds the element that maximally increases F (Y ).

Algorithm 1 greedy-argmax(F,X,K)

Y ← ∅
for m = 1 to K do

Y ← Y ∪ {arg maxe∈X\Y F (Y ∪ e)}
end for
return Y

To exploit greedy maximization in PBVI, we need to re-
place an argmax over A with greedy-argmax. Our alterna-
tive description of PBVI above makes this straightforward:
(7) contains such an argmax, and Q(b, ·) has been intention-
ally formulated to be a set function over A+. Thus, imple-
menting greedy PBVI requires only replacing (7) with:

a∗ = greedy-argmax(Q(b, ·), A+,K). (8)

Note that, since the point of greedy maximization is not to
iterate over A, it is crucial that our implementation does not
first compute α∗a,b and Q(b, a) for all a ∈ A, as this would
already introduce an |A| =

(
N
K

)
term into the complexity.

Instead,α∗a,b andQ(b, a) are computed on the fly only for the
a’s considered by greedy-argmax. Since the complexity of
greedy-argmax is onlyO(|N ||K|), this yields a complexity
for greedy PBVI of only O(|S||N ||K||Γt−1||Ω||B|). Note
also that the αz,a that are generated can be cached because
they are not specific to a given b and can thus be reused.

Using point-based methods as a starting point is essential
to our approach. Exact methods, because they compute V ∗
for all beliefs, rely on pruning operators instead of argmax.
Thus, it is precisely because PBVI operates on a finite set of
beliefs that argmax is performed, opening the door to using
greedy-argmax instead.

Analysis: Bounds given Submodularity
In this section, we present our core theoretical result, which
shows that, under certain conditions, the most important of
which is submodularity, the error in the value function com-
puted by backups based on greedy maximization is bounded.
Later sections discuss when reward based on negative belief
entropy or an approximation thereof meets those conditions.

Submodularity is a property of set functions that corre-
sponds to diminishing returns, i.e., adding an element to a
set increases the value of the set function by a smaller or
equal amount than adding that same element to a subset. In
our notation, this is formalized as follows. The set function
Qπt (b, a) is submodular in a, if for every aM ⊆ aN ⊆ A+

and ae ∈ A+ \ aN ,

∆Qb(ae|aM ) ≥ ∆Qb(ae|aN ), (9)

where ∆Qb(ae|a) = Qπt (b, a ∪ {ae})−Qπt (b, a) is the dis-
crete derivative of Qπt (b, a). Equivalently, Qπt (b, a) is sub-



modular if for every aM , aN ⊆ A+,

Qπt (b, aM∩aN )+Qπt (b, aM∪aN ) ≤ Qπt (b, aM )+Qπt (b, aN ).
(10)

Submodularity is an important property because of the
following result by Nemhauser, Wolsey, and Fisher (1978):
Theorem 1. IfQπt (b, a) is non-negative, monotone and sub-
modular in a, then for all b,

Qπt (b, aG) ≥ (1− e−1)Qπt (b, a∗), (11)

where aG = greedy-argmax(Qπt (b, ·), A+,K) and a∗ =
arg maxa∈AQ

π
t (b, a).

However, Theorem 1 gives a bound only for a single ap-
plication of greedy-argmax, not for applying it within each
backup, as greedy PBVI does. In this section, we establish
such a bound. Let the greedy Bellman operator BG be:

(BGVt−1)(b) =
G

max
a

[ρ(b, a) +γ
∑
z∈Ω

Pr(z|a, b)Vt−1(bz,a)],

where maxGa refers to greedy maximization. This immedi-
ately implies the following corollary to Theorem 1:
Corollary 1. Given any policy π, if Qπt (b, a) is non-
negative, monotone, and submodular in a, then for all b,

(BGV πt−1)(b) ≥ (1− e−1)(B∗V πt−1)(b). (12)

Proof. From Theorem 1 since (BGV πt−1)(b) = Qπt (b, aG)
and (B∗V πt−1)(b) = Qπt (b, a∗).

In addition, we can prove that the error in the value func-
tion remains bounded after application of BG.
Lemma 1. If for all b, ρ(b) ≥ 0,

V πt (b) ≥ (1− ε)V ∗t (b), (13)

and Qπt (b, a) is non-negative, monotone, and submodular in
a, then, for ε ∈ [0, 1],

(BGV πt )(b) ≥ (1− e−1)(1− ε)(BGV ∗t )(b). (14)

Proof. Starting from (13) and, for a given a, on both sides
adding γ ≥ 0, taking the expectation over z, and adding ρ(b)
(since ρ(b) ≥ 0 and ε ≤ 1):

ρ(b)+γEz|b,a[V πt (bz,a)] ≥ (1−ε)(ρ(b)+γEz|b,a[V ∗t (bz,a)]).

From the definition of Qπt (3), we thus have:

Qπt+1(b, a) ≥ (1− ε)Q∗t+1(b, a) ∀a. (15)

From Theorem 1, we know

Qπt+1(b, aGπ ) ≥ (1− e−1)Qπt+1(b, a∗π), (16)

where aGπ = greedy-argmax(Qπt+1(b, ·), A+,K) and a∗π =
arg maxaQ

π
t+1(b, a). Since Qπt+1(b, a∗π) ≥ Qπt+1(b, a) for

any a,

Qπt+1(b, aGπ ) ≥ (1− e−1)Qπt+1(b, aG∗ ), (17)

where aG∗ = greedy-argmax(Q∗t (b, ·), A+,K). Finally,
(15) implies that Qπt+1(b, aG∗ ) ≥ (1− ε)Q∗t+1(b, aG∗ ), so:

Qπt+1(b, aGπ ) ≥ (1− e−1)(1− ε)Q∗t+1(b, aG∗ )

(BGV πt )(b) ≥ (1− e−1)(1− ε)(BGV ∗t )(b).

Next, we define the greedy Bellman equation: V Gt (b) =
(BGV Gt−1)(b), where V G0 = ρ(b). Note that V Gt is the
true value function obtained by greedy maximization, with-
out any point-based approximations. Using Corollary 1 and
Lemma 1, we can bound the error of V G with respect to V ∗.

Theorem 2. If for all policies π, Qπt (b, a) is non-negative,
monotone and submodular in a, then for all b,

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (18)

Proof. By induction on t. The base case, t = 0, holds be-
cause V G0 (b) = ρ(b) = V ∗0 (b).

In the inductive step, for all b, we assume that

V Gt−1(b) ≥ (1− e−1)2t−2V ∗t−1(b), (19)

and must show that

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (20)

Applying Lemma 1 with V πt = V Gt−1 and (1 − ε) = (1 −
e−1)2t−2 to (19):

(BGV Gt−1)(b) ≥ (1− e−1)2t−2(1− e−1)(BGV ∗t−1)(b)

V Gt (b) ≥ (1− e−1)2t−1(BGV ∗t−1)(b).

Now applying Corollary 1 with V πt−1 = V ∗t−1:

V Gt (b) ≥ (1− e−1)2t−1(1− e−1)(B∗V ∗t−1)(b)

V Gt (b) ≥ (1− e−1)2tV ∗t (b).

Analysis: Submodularity under Belief Entropy
In this section, we show that, if the belief-based reward is
negative entropy, i.e., ρ(b) = −Hb(s), then under certain
conditions Qπt (b, a) is submodular, non-negative and mono-
tone, as required by Theorem 2. We start by observing that:
Qπt (b, a) = ρ(b)+

∑t−1
k=1G

π
k (bt, at), whereGπk (bt, at) is the

expected immediate reward with k steps to go, conditioned
on the belief and action with t steps to go and assuming pol-
icy π is followed after timestep t:

Gπk (bt, at) = γ(h−k)
∑
zt:k

Pr(zt:k|bt, at, π)(−Hbk(sk)).

where zt:k is a vector of observations received in the interval
from t steps to go to k steps to go, bt is the belief at t steps
to go, at is the action taken at t steps to go, and ρ(bk) =
−Hbk(sk), where sk is the state at k steps to go.

Proving that Qπt (b, a) is submodular in a requires three
steps. First, we show that Gπk (bt, at) equals the conditional
entropy of bk over sk given zt:k. Second, we show that, under
certain conditions, conditional entropy is a submodular set
function. Third, we combine these two results to show that
Qπt (b, a) is submodular. The proofs of all following lemmas
are detailed in the supplementary material.

The conditional entropy (Cover and Thomas 1991) of a
distribution b over s given some observations z is defined
as: Hb(s|z) = −

∑
s

∑
z Pr(s, z) log(b(s|z)). Thus, condi-

tional entropy is the expected entropy given z has been ob-
served but marginalizing across the values it can take on.



Lemma 2. If ρ(b) = −Hb(s), then the expected reward at
each time step equals the negative discounted conditional
entropy of bk over sk given zt:k:

Gπk (bt, at) = −γ(h−k)(Hbk(sk|zt:k)) ∀ π. (21)

Next, we identify the conditions under which Gπk (bt, at)
is submodular in at. We use the set equivalent z of z since
submodularity is a property of set functions. Thus:

Gπk (bt, at) = γ(h−k)(−Hbk(s|zt:k)), (22)

where zt:k is a set of observation features observed be-
tween t and k timesteps to go. The key condition required
for submodularity ofGπk (bt, at) is conditional independence
(Krause and Guestrin 2007).
Definition 1. The observation set z is conditionally inde-
pendent given s if any pair of observation features are con-
ditionally independent given the state, i.e.,

Pr(zi, zj |s) = Pr(zi|s)Pr(zj |s), ∀zi, zj ∈ z. (23)

Lemma 3. If z is conditionally independent given s then
−H(s|z) is submodular in z, i.e., for any two observations
zM and zN ,

H(s|zM ∪ zN ) +H(s|zM ∩ zN ) ≥ H(s|zM ) +H(s|zN ).
(24)

Lemma 4. If zt:k is conditionally independent given sk and
ρ(b) = −Hb(s), then Gπk (bt, at) is submodular in at ∀ π.

Now we can establish the submodularity of Qπt .
Theorem 3. If zt:k is conditionally independent given
sk and ρ(b) = −Hb(s), then Qπt (b, a) = ρ(b) +∑t−1
k=1G

π
k (bt, at) is submodular in a, for all π.

Proof. ρ(b) is trivially submodular in a because it is inde-
pendent of a. Furthermore, Lemma 4 shows that Gπk (bt, at)
is submodular in at. Since a positively weighted sum of sub-
modular functions is also submodular (Krause and Golovin
2014), this implies that

∑t−1
k=1G

π
k (bt, at) and thus Qπt (b, a)

are also submodular in a.

While Theorem 3 shows that QGt (b, a) is submodular,
Theorem 2 also requires that it be monotone, which we now
establish.
Lemma 5. If V πt is convex over the belief space for all t,
then Qπt (b, a) is monotone in a, i.e., for all b and aM ⊆ aN ,
Qπt (b, aM ) ≤ Qπt (b, aN ).

Tying together our results so far:
Theorem 4. If zt:k is conditionally independent given sk,
V πt is convex over the belief space for all t, π and ρ(b) =
−Hb(s), then for all b,

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (25)

Proof. Follows from Theorem 2, given QGt (b, a) is non-
negative, monotone and submodular. For ρ(b) = −Hb(s), it
is easy to see that QGt (b, a) is non-negative, as entropy is al-
ways positive (Cover and Thomas 1991). Theorem 3 showed
that QGt (b, a) is submodular if ρ(b) = −Hb(s). Lemma 5
shows that QGt (b, a) is monotone in a if V πt is convex.

Analysis: Approximate Belief Entropy
While Theorem 4 bounds the error in V Gt (b), it does so only
on the condition that ρ(b) = −Hb(s). However, as discussed
earlier, our definition of a dynamic sensor selection POMDP
instead defines ρ using a set of vectors Γρ = {αρ1, . . . , αρm},
each of which is a tangent to −Hb(s), as suggested by
(Araya et al. 2010), in order to preserve the PWLC property.
While this can interfere with the submodularity of Qπt (b, a),
in this section we show that the error generated by this ap-
proximation is still bounded in this case.

Let Ṽ ∗t denote the optimal value function when using
a PWLC approximation to negative entropy for the belief-
based reward, as in a dynamic sensor selection POMDP.
Araya et al. (2010) showed that, if ρ(b) verifies the α-Hölder
condition (Gilbarg and Trudinger 2001), a generalization of
the Lipschitz condition, then the following relation holds be-
tween V ∗t and Ṽ ∗t :

||V ∗t − Ṽ ∗t ||∞ ≤
CδαB
1− γ

, (26)

where V ∗t is the optimal value function with ρ(b) =
−Hb(s), δB is a measure of how well belief entropy is ap-
proximated by the PWLC function, and C is a constant.

Let Ṽ Gt (b) be the value function computed by greedy
PBVI for the dynamic sensor selection POMDP.

Lemma 6. For all beliefs b, the error between V Gt (b) and
Ṽ Gt (b) is bounded by CδαB

1−γ . That is, ||V Gt − Ṽ Gt ||∞ ≤
CδαB
1−γ .

Proof. Follows exactly the strategy Araya et al. (2010) used
to prove (26), which places no conditions on π and thus
holds as long as BG is a contraction mapping. Since for any
policy the Bellman operator Bπ defined as:

(BπVt−1)(b) = [ρ(b, aπ) + γ
∑
z∈Ω

Pr(z|aπ, b)Vt−1(bz,aπ )],

(27)
is a contraction mapping (Bertsekas 2007), the bound holds
for Ṽ Gt .

Let η =
CδαB
1−γ and let ρ̃(b) denote the PWLC ap-

proximated belief-based reward and Q̃∗t (b, a) = ρ̃(b) +∑
z Pr(z|b, a)Ṽ ∗t−1(bz,a) denote the value of taking action

a in belief b under an optimal policy. Let Q̃Gt (b, a) be the
action-value function computed by greedy PBVI for the dy-
namic sensor selection POMDP. As mentioned before, it
is not guaranteed that Q̃Gt (b, a) is submodular. Instead, we
show that it is ε-submodular:

Definition 2. The set function f(a) is ε-submodular in a, if
for every aM ⊆ aN ⊆ A+, ae ∈ A+ \ aN and ε ≥ 0,

f(ae ∪ aM )− f(aM ) ≥ f(ae ∪ aN )− f(aN )− ε.

Lemma 7. If ||V πt−1 − Ṽ πt−1||∞ ≤ η, and Qπt (b, a) is sub-
modular in a, then Q̃πt (b, a) is ε′-submodular in a for all b,
where ε′ = 4(γ + 1)η.



Lemma 8. If Q̃πt (b, a) is non-negative, monotone and ε-
submodular in a, then

Q̃πt (b, aG) ≥ (1− e−1)Q̃πt (b, a∗)− 4χKε, (28)

where χK =
∑K−1
p=0 (1−K−1)p.

Theorem 5. For all beliefs, the error between Ṽ Gt (b) and
Ṽ ∗t (b) is bounded, if ρ(b) = −Hb(s), V πt is convex over the
belief space for all t, π, and zt:k is conditionally independent
given sk.

Proof. Theorem 4 shows that, if ρ(b) = −Hb(s), and zt:k is
conditionally independent given sk, then QGt (b, a) is sub-
modular. Using Lemma 7, for V πt = V Gt , Ṽ πt = Ṽ Gt ,
Qπt (b, a) = QGt (b, a) and Q̃πt (b, a) = Q̃Gt (b, a), it is easy
to see that Q̃Gt (b, a) is ε-submodular. This satisfies one of
the conditions of Lemma 8. Given that Ṽ Gt (b) is convex,
the monotonicity of Q̃Gt (b, a) follows from Lemma 5. Since
ρ̃(b) is non-negative, Q̃Gt (b, a) is non-negative too. Thus,
now we can apply Lemma 9 to prove that the error gener-
ated by a one-time application of the greedy Bellman opera-
tor to Ṽ Gt (b), instead of the Bellman optimality operator, is
bounded. It is thus easy to see that the error between Ṽ Gt (b),
produced by multiple applications of the greedy Bellman op-
erator, and Ṽ ∗t (b) is bounded for all beliefs.

Experiments
To empirically evaluate greedy PBVI, we tested it on the
problem of tracking either one or multiple people using a
multi-camera system. The problem was extracted from a
real-world dataset collected in a shopping mall (Bouma et
al. 2013). The dataset was gathered over 4 hours using 13
CCTV cameras located in a shopping mall. Each camera
uses a FPDW pedestrian detector (Dollár, Belongie, and Per-
ona 2010) to detect people in each camera image and in-
camera tracking (Bouma et al. 2013) to generate tracks of
the detected people’s movement over time. The dataset thus
consists of 9915 tracks, each specifying one person’s x-y po-
sition throughout time. Figure 2 shows sample tracks from
all of the cameras.

To address increasing size of state space for multi-person
tracking, we use a variant of transfer planning as proposed
in (Oliehoek, Whiteson, and Spaan 2013). We divide the
multi-person problem into a number of source problem, one
for each person and solve them independently to compute
Vt(b) =

∑
V i(bi), where V i(bi) is the value of the current

belief bi about the i-th person’s location. Thus V it (bi) only
needs to be computed once, by solving POMDP of the same
size as that in the single-person setting. During action selec-
tion, Vt(b) is computed using the current bi for each person.

As baselines, we tested against regular PBVI as well as
myopic versions of both greedy and regular PBVI that com-
pute a policy assuming h = 1 and use it at each timestep.
More details about the experiments can be found in the ex-
tended version(Satsangi, Whiteson, and Oliehoek 2014) of
the paper.

Figure 3, which shows runtimes under different values of
N and K, demonstrates that greedy PBVI requires only a

Figure 2: Sample tracks for all the cameras. Each color rep-
resents all the tracks observed by a given camera. The boxes
denote regions of high overlap between cameras.

fraction of the computational cost. Since, we use the value
function obtained by solving POMDP for single-person, for
multi-person tracking, single and multi-person tracking have
the same runtimes. In addition, the difference in runtime
grows quickly as the action space gets larger: forN = 5 and
K = 2 greedy PBVI is twice as fast, while forN = 11,K =
3 it is approximately nine times as fast. Thus, greedy PBVI
enables much better scalability in the action space.

Figure 3: Runtimes for the different methods.

Figure 4, which shows the cumulative reward under dif-
ferent values of N and K for single-person (top) and
multi-person (bottom) tracking, verifies that greedy PBVI’s
speedup does not come at the expense of performance, as
greedy PBVI accumulates nearly as much reward as regu-
lar PBVI. They also show that both PBVI and greedy PBVI
benefit from non-myopic planning. While the performance
advantage of non-myopic planning is relatively modest, it
increases with the number of cameras and people, which
suggests that non-myopic planning is important to making
active perception scalable.

Furthermore, an analysis of the resulting policies showed
that myopic and non-myopic policies differ qualitatively. A
myopic policy, in order to minimise uncertainty in the next
step, tends to look where it believes the person to be. By con-
trast, a non-myopic policy tends to proactively look where
the person might go next, so as to more quickly detect her
new location when she moves. Consequently, non-myopic
policies exhibit less fluctuation in belief and accumulate
more reward, as illustrated in Figure 5. The blue lines mark
when the agent chose to observe the cell occupied by the per-



Figure 4: Cumulative reward for single-person (top) and
multi-person (bottom) tracking.

son and the red line plots the max of the agent’s belief. The
difference in fluctuation in belief is evident from the figure
as the max of the belief often drops below 0.5 for the myopic
policy, but rarely for the non-myopic policy.

Related Work
Dynamic sensor selection has been studied in many con-
texts. Most work focuses on either open-loop or myopic so-
lutions, e.g., (Kreucher, Kastella, and Hero 2005; Williams,
Fisher, and Willsky 2007; Joshi and Boyd 2009). By con-
trast, our POMDP-approach enables a closed-loop, non-
myopic approach that can lead to better performance when
the underlying state of the world changes over time.

Spaan (2008) and Spaan and Lima (2009) also consider
a POMDP approach to dynamic sensor selection. However,
they apply their method only to small POMDPs without ad-
dressing scalability with respect to the action space. Such
scalability, which greedy PBVI makes possible, is central to
the practical utility of POMDPs for sensor selection. Other
work using POMDPs for sensor selection (Krishnamurthy
and Djonin 2007; Ji, Parr, and Carin 2007) also does not
consider scalability in the action space. Krishnamurthy and
Djonin (2007) consider a non-standard POMDP in which,
unlike in our setting, the reward is not linear in the belief.

In recent years, applying greedy maximization to sub-
modular functions has become a popular and effective ap-
proach to sensor selection (Krause and Guestrin 2005;
2007). However, such work focuses on myopic or fully ob-
servable settings (Kumar and Zilberstein 2009) and thus
does not enable the long-term planning required to cope with
dynamic state in a POMDP.

Adaptive submodularity (Golovin and Krause 2011) is a

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Timestep

M
a

x
 o

f 
b

e
lie

f

 

 

Max of belief

Position of person
covered by chosen camera

Non−myopic

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Timestep

M
a

x
 o

f 
b

e
lie

f

 

 

Max of belief

Position of person
covered by chosen camera

Myopic

Figure 5: Behaviour of myopic vs. non-myopic policy.

recently developed extension that addresses these limitations
by allowing action selection to condition on previous obser-
vations. However, it assumes a static state and thus cannot
model the dynamics of POMDP across timesteps. There-
fore, in a POMDP, adaptive submodularity is only applica-
ble within a timestep, during which state does not change
but the agent can sequentially add sensors to a set. In princi-
ple, adaptive submodularity could enable this intra-timestep
sequential process to be adaptive, i.e., the choice of later sen-
sors could condition on the observation generated by earlier
sensors. However, this is not possible in our setting because
we assume that, due to computational costs, all sensors must
be selected simultaneously. Consequently, our analysis con-
siders only classic, non-adaptive submodularity.

To our knowledge, our work is the first to establish the
submodularity of POMDP value functions for dynamic sen-
sor selection POMDPs and thus leverage greedy maximiza-
tion to scalably compute bounded approximate policies for
dynamic sensor selection modeled as a full POMDP.

Conclusions & Future Work
This paper proposed greedy PBVI, a new POMDP planning
method for dynamic sensor selection that exploits greedy
maximization to improve scalability in the action space. We
showed that the value function computed in this way has
bounded error if certain conditions including submodularity
are met. We also showed that such conditions are met, or ap-
proximately met, if reward is defined using negative belief
entropy or an approximation thereof. Experiments on a real-
world dataset from a multi-camera tracking system show
that it achieves similar performance to existing methods but
incurs only a fraction of the computational cost, leading to



much better scalability in the number of cameras.
One avenue for future work includes quantifying the er-

ror bound between Ṽ Gt (b) and Ṽ ∗t (b), as our current results
(Theorem 5) show only that it is bounded. Another avenue
is to develop on-line POMDP planning methods that exploit
submodularity by employing greedy maximization. We also
intend to consider cases where its possible to sequentially
process information from sensors and thus integrate our ap-
proach with adaptive submodularity.
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